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A solution of the problem of Interference between two parallel-situated wings 
In supersonic gas flow was obtained by a method of Volterra Cl] with the help 
of a transformation of Fal'kovlch [2]. A similar transformation has also 
been used by Frldlender [3] for an analysis of the flow past a cruciform wing. 
In that paper the possibility of using this method for the lnvestlgatlon of 
the flow within a rectangular paralleleplped 1s pointed out. In contrast to 
this, ln the present paper the solution of this problem Is obtained through 
its reduction to the problem of flow between two parallel wings. 

1. Over a system of two slender wings, situated one over the other, flows 
a supersonic stream of Ideal gas. We direct the x-axis of a rectangular 
coordinate system X, y, .z along the direction of flow of the stream, and 
choose the axes y and z such that with zero angle of attack c , the wing 
surfaces differ little from the planes z-0 and a-h. We designate by 
S- the region In the plane E = 0 ln which the lower wing gives rise to a 
disturbance, and by S+ the disturbed region of the upper wing in the plane 
r=h (see Flg.1). We will consider the velocity potential of the perturbed 
flow to satisfy the wave equation 

80 @CP &.D -_-----_=~ 
3x2 ay2 a,_* 

(1.1) 

Here we have taken the Mach number at Infinity to be \/2 . For the other 
values of M the Prandtl-Glauert transformation 1s used. 

We consider first the case where the leading edge of one wing does not 
Influence the leading edge of the other. 
wings, the point P (z , Y,, zp ._ ) 

Let us take, In the space between 

8' 
The characteristic cone with vertex at this 

point, goI9 In the lrectlon of decreasing values of 
S and S- corresponding regions s+(X,,, ?I,- z& 

x , cuts out on the 
surfaces 
Application to the point P 

and s- (XP' ?J,, q. 
of the Volterra formula [l] yields 

@ (xp9 Yp. zp) = 2&- g- ss ( au (PI 
P(P) ‘; - @ 7) dxdy (1.2) 

p s+(P)+s-(P) 
Here 

U(P) = lg 
2,--s+ 1/(X, - r)3 - (zp - z)2 - (Y,-Y)2 

1/(z, - z)z + (Y, -YP 1 
and n Is the direction of the outward normal to the surfaces s* and S-. 
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In the derivation of Equation (1.2) it was taken into account that on the 
characteristic surfaces 2, , which divide the 

/P,+ 
regions of perturbed ana‘unperturbed flows, 
the potential @ is zero. 

Let us take now the point 4 (Zpr Y,, z,& 
lying outside of the space between the wings. 
The characteristic cone with vertex at this 
point cuts out in the regions S+ and S cer- 
tain portions S+(4) and S-(4), whlch,togsU=x 
with the sides of the characteristic cone and 
the surface Z: , form a closed region. The 
application of Green’s formula fl] to the func- 
tions 9 and U(q) in this region yields 

“p- 
Fig. 1 I 

ss i 

au(q) 
W)$$-@~ 1 dxdy = 0 (1.3) 

s+(p)+s-(q) 
We choose the point 4 symmetrical to the point P relative to the plane 

z = h , and designate it by PI’. In consequence of the symmetry of the 
points P and pl+ we have on the plane Z=h 

U (PC+) = u (p), d.J (m+) / an = - au (PI/ an, S+ (PI+) = S+ (1-4 (1.4) 

From Equation (1.3), using (1.41, we obtain 

ss @ au(F) -yg---dxdy =- 
am 

U(P) xdxdy- 
s+w ss 

s+(P) 

aa, U.5) 
- 

u (PA+) -&- - Q 

If we now apply an analogous transformation for the point P1-(xp, -Yyp, z,,h 
symmetric to the point P relative to the plane z - 0 , we have as a result 

cD au (PI -dzdy = - 
6% SC ac]D 

s-h 

VfP)xdxdY - 

- U (h-f ‘2 - <D ‘q-j dx dy Ii.61 

Substituting (1.5) and (1.6) In (1.2), we get 

It is evident that $$ (~~-1 <S*(p) and Srfp~*.+) <S-(p). It might turn out 
that the regions S+(P,-)=.~ and S (Pi+)= 0 ; if, however, this Is not 
the case, then transformatlon (1.3) can be applied next to the region S(P,-) 
or_ S-(p,+], taking point pat or pa- to be symmetric, with respect to point 
Pl relative to the plane 
t&s.@% u&i in the right part of Fo:ilz 

or a=0 
(1.7) all 

This process is con- 
integrals containing the 

function (0 vanish, and we obtain 

where 

The series In (1.8) terminates when the points PI+, pi- leave the region 
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of Influence of the wings. 

Performing the differentiation in Equation (1.8), we find 

where 

@(PI= 2 fcD+ (Pi-1 +a3-(Pi+)l (1.9) 
i=o 

(1.10) 

From (1.10) it is seen that the function @'(.Pp;) is none other than the 
Value of the pote+ntlal, at the point p -, for flow over the isolated upper 
wing isol;t~dlowe$-$(p~& Is the potential, ai the point p,+, for flow over the 

. Thus the potential for flow between two parallel- 
situated wings is expressed through the potentials for flow over these wings 
when isolated. 

If the leading edges of the wings are supersonic, then Formula (1.10) 
immediately gives the solution to the problem of flow between two surfaces, 
since the derivative a@/!% is known in this case from the boundary condl- 
Mon. In the case of a subsonic leading edge the determination of the poten- 
tial for flow over an isolated wing also does not give rise to difficulties 
of principle [4]. 

2. We assume now that the supersonic leading edge of the lower wing lies 
in the region of influence of the upper wing. Designate by (4, the potential 
for flow over an isolated-upper wing. 

We think now of the lower wing as being continued up to the intersection 
with the characteristic surface passing through the leading edge of the upper 
wing, and set aar/an = Mb/an on the new surface. We would then solve the 
problem with boundary conditions on the upper and new, fictitious, lower 
wings. Obviously this new problem Is equivalent to the old, and its solution 
is given by Formula (1.9). 

3. Let us consider supersonic flow withln a hollow rectangular Parallele- 
pipe;, whose boundaries differ little from the planes s = 0, z = h, y - 0, 

We designate the projections 
;&es*,, s‘+ &'- 

of the boundary surfaces onto these 

tions will hate the 
o+ and 4-3 respectively. The linearized boundary condi- 
form 

a@ / az = F+(z, y) on S+, aCP / dz = F- (x, y) on S- (3.1) 

a@ f ay = L+ (x, 2) 0x1 Q4, I?@/& = L-(x, 2) on Q- (3.2) 

and on the characteristic surfaces passing through the leading edges of the 
boundaries, 0 1 0 . 

We will seek a solution to the posed problem in the form of a sum 
o=%+Q$* Function @e must satisfy conditions (3.X) and, besides these, 

aQJ/ay = 0 on Q+ and Q’ (3.3) 

The potential q in contrast, must satisfy relations (3.2), and on the 
surfaces $+ and s- it Is required that a$/aa = 0 . The sum of futNti.ons 
thus selected obviously solves the posed problem. We will find the function 
@o * 

Let us consider an auxiliary problem. Let the equations of the leading 
edges of the surfaces s+ and S- be given, respectively. in the form 

x = LX+ t$.& z = x- (y) (0 < Y < b) (3.4) 

We form the surface s", infinite in the direction of the y-axis, with 
leading edge given by Equation x = x*+(y) , where 
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x*+ (- y) = x’f (y), x’+ (y f 2bk) = z’f (y) (k is the 

x'+ (Y) = x+ (Y), If b>y>O 
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integer) 

that Is, the region 9: coincides with the region S+ in the Interval [ O,bJ, 
and eaoh plane b, = f kb is a plane of symmetry for this surface. We also 
form, in a similar way, the region S*- on the basis of the region S-. 

We define now, on the region S.+, the function F++ by the equalities 

p'+ (Z, - y) = F'+ (x, y), F’+ (2, y f 2kb) = p’+ (2, y) 

F’+ (xv Y) = F+ (2, Y), 1.f bay>,0 

The function F.+(x,y) will thus be symmetric with respect to each plane 

r.--(r,y) : 
On the surface S*- we construct, in a similar way, the function 
taking as basis the function F-(x,y) . 

We will consider now the problem of the wave equation with the following 
boundary conditions: 

aa) 
az = F’+ (x, y) ou S’+, 

Em* 
-ygy = F’- (x, Y) on s’+ 

Since boundar 
1 

conditions (3.5) are symmetric with respect to the planes 
y-0 and y then the solution also must by symmetric with respect to 
these planes, and ihe condition d@+/dy 
automatically be satisfied. 

= 0 for y = 0 and y = b must 
In addition, the boundary conditions (3.5) agree 

In the Interval [O,b] with conditions (3.1) by construction. The function 
Q satisfies all the conditions established for the function QO, and it 
follows that they are Identically equal In the Interval [O,b] . However, 
solutions to the problem for # were obtained In Section 1. The determlna- 
tlon of the potential @I 
lem just considered. 

Is mathematically indistinguishable from the prob- 
Thus the potential for supersonic flow within a hollow 

rectangular parallelepiped Is represented in the form of a quadrature, 

Obviously, a solution can be obtained in the same way If the papallele- 
piped has only three faces. 
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