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A solution of the problem of interference between two parallel-situated wings
in supersonic gas flow was obtained by a method of Volterra [1] with the help
of a transformation of Fal'kovich [2]. A similar transformation has also

been used by Fridlender [3] for an analysis of the flow past a cruciform wing.

In that paper the possibility of using this method for the investigation of
the flow within a rectangular parallelepiped 1s pointed out. In contrast to
this, in the present paper the solution of this problem is obtained through
its reduction to the problem of flow between two parallel wings.

l, Over a system of two slender wings, situated one over the other, flows
a supersonic stream of ideal gas. We direct the x-axis of a rectangular
coordinate system x, y, z along the direction of flow of the stream, and
choose the axes y and 2z such that with zero angle of attack o , the wing
surfaces differ little from the planes 2 = 0 and =z = h . We designate by
S~ the region in the plane 2z = O 1in which the lower wing gives rise to a
disturbance, and by S* the disturbed reglon of the upper wing in the plane
z =h (see Fig.1l). We will consider the velocity potential of the perturbed
flow to satisfy the wave equation

e — =2 =0 (1.1)

Here we have taken the Mach number at infinity to be 2 . For the other
values of M the Prandtl-Glauert transformation is used.

We consider first the case where the leading edge of one wing does not
influence the leading edge of the other. Let us take, in the space between
wings, the point P (%, ¥, Z,)., The characteristic cone with vertex at this
point, going in the d%rection of decreasing values of .x , cuts out on the
surfaces S* and S~ corresponding regions S+($p,ypvzp and S (x
Application to the point P of the Volterra formula [1] yields

19 a0 U (p)
O (2, Uy 2,) = 35 5u- (0@ 5 — @ 52 dzay  (1.2)
P s+p)+5-(p)

p Upr Zp)

Here

2y =5+ V iz, = 2f — (5, — 2P = (v, — ¥)* ]
Ve, — 27+, —v*

and n 1is the direction of the outward normal to the surfaces S* and S~ .

U(P)=lg[
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In the derivation of Equation (1.2) it was taken into account that on the
characteristic surfaces X, , which divide the
regions of perturbed anda unperturbed flows,
the potential ¢ 1s zero.

. Let us take now the point ¢ (¥, ¥g )
ARSI st lying outside of the space between the wings.
¥4 The characteristic cone with vertex at this
point cuts out in the regions $* and §~ cer-
tain portions s*(¢) and s57(g), which, together
with the sides of the characteristic cone and
$ the surface 3 , form a closed region. The
Y application of Green's formula [1] to the func-

S; Ja_\ 7 tions ® and U7(¢) in this region ylelds

g au (g)
!
Fig. 1 S [U(q) an —®T-]d rdy=0 (1.3)
SH+87(9)
We choose the point ¢ symmetrical to the point P relative to the plane
z = h , and designate it by P2;*. In consequence of the symmetry of the
points P and p,* we have on the plane 2z = h

z y=7 A"

U(p)=U(p), oU(p*)/on=—2U(p)/on, S*(p*)=5*%(p) (1.4)
From Equation {1.3), using {1.4), we obtain
2
SS o L:;(P) dzdy = — SS U(p)%%)-dxdy—-
S+(p) S+{(p) (1.5)
o0 v {;mt *
- {{ [vem% - o 2  sray
8~{p:t)

If we now apply an analogous transformation for the point 1~ (xp, Ypr zp).
symmetric to the polnt P relative to the plane 2 = 0 , we have &5 a result

0250 aray = — T vin 5 aeas -
J 57(p)
= B [ron% -0 %0 e,
8+(pm)

Substituting (1.5) and {1.6) in (1.2}, we get

O = |2 S§)U{y>~g—;dxdy 2 8(5,) Uip) g drdyt (L)

' 90 U (p* \ U (pr-
+ Upy 5, — @ (71 )}3 dy + [U (Px') - @ (Pl )]daz dy}
, on on 6
S=(py+) S+{p)
It is evident that St (p) < S§* (P) and S {p*) <87 (p). It might turn out
that the regions S+ (p,;) =0 and § (p,*) =0 ; 1if, however, this 1s not

the case, then transformation (1.3) can be applied next to the region $*(m”)
or_ S “{p,* ), taking point P,;* or p,” to be symmetric, with respect to point
p,” or p,*, relative to the plane z = h or 2z = 0 . This process is con-
'cinued until in the right part of Formula (1.7} all integrals containing the
function o vanish and we obtain

o0 =753 [ \R v Graa+ | ven Grea] s
Pimo st{n 8=(p;)
where
Bpp =Tty =T, T2
The series in (1.8) terminates when the points p,;*, p,” leave the region
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of influence of the wings.
Performing the differentiation in Equation {1.8), we find

O (p)= Z [@* (p;7) + @ (p;*)] (1.9)
where i=0
= 3D / on dx dy
Ot (p;7) = —
b1 S.;,(pi-) V(xp —_ :8)3 — (yn — y}s — (zpi_ I h)2
O (1) = — 3D | on dz dy o

S_(pi+) V(mp - 3)2 - (yp - y)2 - zpi+2

From (1.10) it 1s seen that the function P*(Pp7) 1is nore other than the
value of the potential, at the point p,”, for tlow over the lisolated upper
wing, and dr(pf) 1s the potential, at the point p,*, for flow over the
isolated lower wing. Thus the potential for flow between two parallel-

situated wings 1s expressed through the potentials for flow over these wings
when isolated.

If the leading edges of the wings are supersonic, then Formula (1.10)
immedlately gives the solution to the problem of flow between two surfaces,
since the derivative doMn is known in this case from the boundary condi-
tion. 1In the case of & subsonic leading edge the determlnation of the poten-
tial for flow over an isolated wing also does not give rise to difficulties
of principle [4].

2. We assume now that the supersonic leadlng edge of the lower wing lies
in the region of influence of the upper wing. Designate by @& the potentlal
for flow over an l1solated-upper wing.

We think now of the lower wing as being continued up to the intersection
with the characteristic surface passing through the leading edge of the upper
wing, and set aQ/an = aib/%n on the new surface. We would then solve the
problem with boundary conditions on the upper and new, fictitious, lower
wings. Obviocusly this new problem 1s equivalent to the old, and its solution
is given by Formula {1.9).

3. Let us consider supersonic flow within a hollow rectangular parallele-
piped, whose boundaries differ little from the planes 2 = 0, 2z =h, y = o,
¥y = b . We designate the projections of the boundary surfaces onto these
planes by S*, §7, 0% and {7, respectively. The linearized boundary condl-
tions will have the form

o® /8z = F+(z,y) on St O/0z= F (x,y) onS~ 3.1)
8D /8y =L+ (z, z) on Q% ab /oy =L (x,2 on Q" {3.2)
and on the characteristic surfaces passing through the leading edges of the
boundaries, ¢ = 0 .
We will seek a solution to the posed problem in the form of a sum
&= %+ & . PFunction &, must satlsfy condlitions {(3.1) and, besides these,
8D, /3y =0 on @F and Q- 3.3)

The potential @ , in contrast, must satlsfy relations (3.2), and on the
surfaces S* and S~ it is required that 234 /32 = 0 . The sum of functions
thus selected obviously solves the posed problem. We will find the function
¢y .

Let us consider an auxiliary problem. Let the equations of the leading
edges of the surfaces &§* and S~ be given, respectively, in the form

z = z* (¥}, z =z~ (¥) o<y<<hH (3.4)

We form the surface S-*, infinite in the direction of the y-axis, with
leading edge given by Equation x = x**(y) , where
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gt (—y) =zt (y), 't (y 4 2bk) = 2’ (y) (k 1s the integer)
Tt (y) = =+ (y), b>y>0

that 1s, the region S°* coincildes with the region S* in the interval [0,2],
and each plane y = + x» 1s a plane of symmetry for this surface, We also
form, 1n a simllar way, the region S°~ on the basis of the region S$~.

We define now, on the region $**, the function F#/* by the equalities
Ft(z, —y) = F*(z, ), F* (z, y £ 2kb) = F'* (7, 9)
F'+(z,y)=F+(x,y), lf b>y>0

The function F'*(x,y) will thus be symmetric with respect to each plane
Yy =+ kb . On the surface &§°~ we construct, in a similar way, the function
P~ (x,y) , taking as basis the function F (x,y) .

We will consider now the problem of the wave equation with the following
boundary conditions:
iu . . o’ i .
E—=F+(x,y) on &', —E-=F"(x,y) on §'+ (3.5)

Since boundarg conditions (3.5) are symmetric with respect to the planes
y=0 and y , then the solution also must by symmetric with respect to
these planes, and the condition d¢/dy = O for y =0 and y = ? must
automatlically be satisfied. In addition, the boundary conditions (3.5) agree
in the interval [0,2] with conditions (3.1) by construction. The function
¢ satisfles all the conditions established for the function ®¢,, and it
follows that they are identically equal in the interval [0,b] . However,
solutions to the problem for ¢ were obtained in Section 1. The determina-
tlon of the potentlal ¢, 1s mathematically indistinguishable from the prob-
lem Just considered. Thus the potential for supersonic flow within a hollow
rectangular parallelepiped 18 represented in the form of a quadrature,

Obviously, a solution can be obtained in the same way if the papallele-
piped has only three faces.
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